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Chapter 1

Solution to quadratic assignment
problems (QAP) using Ant Colony
System

1.1 Introduction

Quadratic assignment problems (QAPs) belong to the most difficult combinatorial opti-
mization problems. The QAP was introduced by Koopmans and Beckmann in 1957 as a
mathematical model for the location of indivisible economical activities.The quadratic as-
signment problem (QAP) is the problem of assigning n facilities to n locations so that the
cost of the assignment, which is a function of the way facilities have been assigned to loca-
tions, is minimized.
We want to assign n facilities to n locations with the cost being proportional to the flow be-
tween the facilities multiplied by the distances between the locations plus, eventually, costs
for placing the facilities at their respective locations. The objective is to allocate each facility
to a location such that the total cost is minimized.

The QAP problem was first presented by Koopmans and Beckmann (1957) by the three
matrices of dimension n× nin the following form:

D = [dih] = matrix of the distances (between location i and location h);

F = [fjk] = matrix of the flows (between activity j and activity k);

C = [cij] = matrix of the assignment costs (of activity j to location i). (1.1)

Matrices D and F are integer-valued symmetrical matrices, the assignment cost cij of
activity j to location i is usually ignored, as it does not make a significant contribution to
the complexity of solving the problem.

After this construction, a permutation Π : i− > π(i) can be introduced as a particular
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assignment of activity j = π(i) to location i(i = 1, 2, 3, ..., n).

The cost of transferring data between two activities can be expressed as the product of
the distance between the locations to which the activities are assigned by the flow between
the two activities, dihfπ(i)π(h).

In order to solve the QAP we must find a permutation Π of the indices 1, 2, 3, ..., n which
minimizes the local assignment cost:

min z =
n∑

i,h=1

dihfπ(i)π(h) (1.2)

The problem is formulated to show the quadratic nature of the objective function: solving
the problem means identifying a permutation matrix X of dimension n×n (whose elements
Xij are 1 if activity j is assigned to location i and 0 in the other cases) such that:

min z =
n∑

i,j=1

n∑
h,k=1

dihfjkXijXhk

Subject to the following constraints fot the elements Xij

n∑
i=1

Xij = 1 for j = 1, 2, 3, ..., n

n∑
j=1

Xij = 1 for i = 1, 2, 3, ..., n

Xij ∈ (0, 1) for i, j = 1, 2, 3, ..., n (1.3)

These constraints identify the matrix X as belonging to set Π of the permutation matrices
of order n. Please note that the QAP is a generalization of the Traveling Salesman Problem
(TSP).

1.2 The ANT Colony System (ACS)

The quadratic assignment problem (QAP) is the problem of assigning n facilities to n loca-
tions so that the cost of the assignment, which is a function of the way facilities have been
assigned to locations, is minimized.
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1.2.1 How Ants Find a Shortest Path

Figure 1.1: How ants exploit pheromone to find a shortest path

In A ants arrive at decision point 1 and 2. In B some ants choose the right path and some
the left path. The choice is random. As the ants move at a constant similar speed, the ants
that choose the right path will arrive at their destination quicker than those who choose the
left path. Since pheromone accumulates where more ants travel, the shortest path begins
to be the main choice of the ants in C. shortly all ants will choose the shorter, and more
efficient path.

1.2.2 ACS pheromone configuration

Figure 2 shows an example of a trial configuration found by ACS in a network optimiza-
tion problem. Line thickness reflects pheromone concentration. Heavier thickness indicates
heavier concentration. Some edges are strongly marked, while others are weakly are weakly
marked. Strongly marked edges are most likely to be part of the best solution found by
the system. However, the weakly marked adges point to potential alternative solution. By
relating these solution, local minimum solutions may be avoided. In the case of dynamic
problems, where edges and nodes are constantly being modified or added, an alternative suite
of weaker solutions may become strong ones. It may be possible that dynamic problems may
become strong condidates for ACS methods.
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Figure 1.2: How ants exploit pheromone to find a shortest path

1.2.3 ACS Algorithm

According to our construction of QAP, we have a flow matrix, f , whose (i, j) element rep-
resents the flow between facilities i and j, and a distance matrix, d, whose (i, j) element
represents the distance between locations i and j. A vector p(j) represents the location to
which facility j is assigned. This vector is a permutation of the numbers {1, 2, ..., n}.

Assumed that ants are traveling on a graph from a city r to the next city s. Each edge (r, s)
on this graph has a cost (length), δ(r, s), and a pheromone measure, τ(r, s), which is updated
every time an ant walks over this edge. Each ant builds a complete tour, by choosing its
next city according to a probabilistic transition rule. The transition rule implies that better
odds are given to cities connected by short edges with high amounts of pheromone. Figure
2 shows conceptually how the pheromone concentrations may vary as the ants traverse the
network.

According to the transition rule, an ant located at city r, will choose its next city s,
according to the equation:

s =

{
arg maxu∈Jk(r) {[τ(r, u)]µ[η(r, u)]β} if q < q0

Dttermined by Equation (5) otherwise
(1.4)

Where,
Jk(r) is the set of cities that remain to be visited by ant k positioned in city r and η(r, u) =
1/δ(r, u).
[µ, β] are parameters that set the relative importance of pheromone vs. distance.
q0 is a constant parameter, defined by the range (0 < q0 < 1), which is selected to estab-
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lish the exploitation vs. exploration. As q0 decreases the ant chooses more according to
pheromone concentrations (more exploitation). As q0 increases the ant chooses more ac-
cording to probability (more exploration). Exploration would tend to keep the ants out of
local minimums. Thus, q0 may be related to risk tolerance; higher values suggest more risk
tolerance. Thus, exploration (high values of q0) would be appropriate at the beginning of a
search and exploitation at the end of a search.
q = is a random number defined by the range (0 < q < 1). Higher values of q improve the
richness of the search paths chosen by the ants. If q is less than q0, the ant simply chooses
the best path according to pheromone and η. If q is greater than or equal to q0, the ant will
choose its next city according to the probability equation:

pk(r, s) =

{
[τ(r,s)]µ[η(r,s)]β∑

u∈Jk(r)
[τ(r,u)]µ[η(r,u)]β

if s ∈ Jk(r)

0 otherwise
(1.5)

Where Pk(r, s) is the chance of city s to be chosen by ant k positioned in city r. Since
the pheromone on the edge is multiplied by η, which depends on δ, better odds are given to
shorter edges with more pheromone.

After each ant relocation step, the pheromone on all edges is updated according to a local
pheromone-updating rule given by:

τ(r, s) = ((1− ρ)× τ(r, s) + ρ×∆τ(r, s)) (1.6)

Where ρ is a parameter defined in the range (0 < ρ < 1), describes the local evaporation
of pheromone, and ∆τ(r, s) is the sum of all pheromone left by ants that used this edge in
their last step. Normally ρ is fixed during the path search. An ant using edge (r, s), normally
leaves 1/δ(r, s) pheromone on the edge.

Once all ants have completed a tour, a global pheromone-updating rule is applied. The
global updating rule is described by the equation:

τ(r, s) = ((1− α)× τ(r, s) + α×∆τ(r, s) (1.7)

Where α is the global evaporation parameter defined by the range (0 < α < 1).

∆τ(r, s) =

{
1

length of global best tour
If (r, s) belongs to this global best tour

0 otherwise
(1.8)
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Equation (7) is only applied to the global best solution. Normally, α is not varied during
the search. In addition to this, according to a boolean parameter, each ant may leave a
global trail, adding 1/(length of their tour) to each edge belonging to its last tour.

1.3 Complexity

One important factor in considering ACS over other algorithms is its efficiency compared to
those other algorithms. It is assumed that in each step, each ant has to decide which way
to go. It is further assumed that n is the number of cities that may be visited by m ants
for k cycles. From every city, an ant can go to any city it hasn’t visited yet. This means
it has to decide from among n cities. Before deciding, it has to calculate the probability of
each path. This part requires n calculations. Thus for all ants combined, one step requires
m× n calculations. To complete 1 cycle, one ant must go through all n cities, which means
it has to complete n steps. This requires m×n×n calculations for each cycle. Therefore the
running time is O(mn2k), which is much better for big graphs than the recursive solution -
O(n!)3. It is obvious that there are also a constant number of calculations each ant has to
perform in each step.

1.4 Demonstration of local and global optimization tech-

niques

Local minimum f ? = f(x?), local minimizer x?. Smallest function value in some feasible
neighbourhood. For x? ∈ Ω there exists a δ > 0 such that f ? ≤ f(x) for all x ∈ {x ∈ Ω :
|x− x?| ≤ δ}.

Global minimum f ? = f(x?), global minimizer x?. Smallest function value over all feasible
points, for all x ∈ Ω, f ? ≤ f(x).

There can be many local minima which are not global minima. n the context combinatorial
problems, global optimization is NP-hard. Special properties (eg. convexity) of feasible
region Ω and objective function f imply that any local solution is a global solution.

1.5 Solving QAP using ACS

Let us consider the following real world example:

1.5.1 Example 1: QAP of order 8

The spaces available are concentrated in the three following buildings:
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1. Tower: a building on four identical floors, each has one unit, numbered from 1 to 4
(one per floor).

2. Building A: a three-floor construction near to the TOWER building, with direct
pedestrian connections at the level of the first two floors (as well as the outside passage)
and with one unit per floor, numbered from 5 to 6.

3. Building B: a construction with several floors, of which the first two are available for
the company in question, detached from the previous buildings and connected to them
by footpaths. Here also one unit is available on each usable floor, numbered from 7 to
8. The whole is shown in Figure.

Figure 1.3: Position of the units in the three buildings available

The distance matrix is made of the times (in seconds) an employee need to move from
location i to location h (i, h = 1, 2, ..., 8).

For simplicity, consider the distances between the units on the various floors of each
building are identical, although sometimes there are obligatory paths which may cause small
differences. The distances are estimated on the basis of the conditions of normal activity of
the offices themselves (waiting times for the service lifts and/or any use of alternative routes,
walkways or stairs).
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D =



0 1 2 3 1 2 3 4
0 1 2 2 1 2 3

0 1 3 2 1 2
0 4 3 2 1

0 1 2 3
0 1 2

0 1
0


Flow between activities is the number of personal contacts necessary on average in a week

by the employees of various offices, weighted according to the qualification of the person
involved (the employees were assigned weight 1 and the managers weight 2), thus trying to
correlate the movements to the effective burden in terms of working costs. The matrix of the
flows between the various activities was obtained by quali-quantitative indications obtained
from all the managers of the various services.

F =



0
5 0
2 3 0
4 0 0 0
1 2 0 5 0
0 2 0 2 10 0
0 2 0 2 0 5 0
6 0 5 10 0 1 10 0


Please note that distance and flow matrices are symmetric therefore we need only upper

and lower or lower and upper input for distance and flow matrices as input respectvely.

For simplicity we can combine distance and flow matrices together and form a new matrix
distance-flow (DF) as follows:

DF =



0 1 2 3 1 2 3 4
5 0 1 2 2 1 2 3
2 3 0 1 3 2 1 2
4 0 0 0 4 3 2 1
1 2 0 5 0 1 2 3
0 2 0 2 10 0 1 2
0 2 0 2 0 5 0 1
6 0 5 10 0 1 10 0


In the distance-flow matrix upper half is represented as distance and lower half is repre-

sented as flow andDFii = 0, for i = 1, 2, ..., n is obvious (no distance-flow from location i to i).
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For ants = 5, µ = −1 (weight of pheromone), β = 1 (weight of heuristic info), ρ = 0.9
(evaporation parameter), Q = 10 (Constatnt for pheromone update). These are the most
effective parameter values has been found to get the best optimum value.

We get, the objective function of the permutation (8,7,4,6,5,1,3,2) corresponding to the
real location of the offices in the units available 118.

Figure 4 shows a ACS solution for the QAP input matrix shown above, this is a sub
optimal solution at 118 whereas the ideal solution is 107.
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Figure 1.4: Typical Iteration to Solution

1.5.2 Demonstration of local and global optimization techniques
of QAP of order 8

Here we give statistical design of global optimization experiments to obtain optimal combi-
nation of global optimization parameters that would be giving solution close to the global
optimal solution.

We also describe comparison between multistart local optimization and global optimiza-
tion.

Figure 5 and 6 compare Monte Carlo trials with 8 (the same number of nodes) and 4 ants
(agents) with 200 trials.
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Figure 1.5: Comparison with the Number of Ants Equal to Number of Nodes (8)
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Figure 1.6: Comparison with Number of Ants Fixed at Four

1.5.3 Example 2: QAP of order 33

Let us extend the QAP constructed above with the example of Tower, Building A and
Building B. Assuming all assumptions are same.
Figure 7 represents a QAP formulation of Tower, Building A and Building B with QAP of
order 33 (problem length).
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Figure 1.7: Position of the units in the three buildings available

The distance matrix is made of the times (in seconds) an employee need to move from
location i to location h (i, h = 1, ..., 33). The distance-flow matrix is given in apendix A.

We get, the objective function of the permutation (21, 11, 5, 30, 29, 4, 8, 25, 16, 24, 28,
17, 1, 26, 13, 32, 33, 22, 18, 7, 31, 3, 19, 6, 27, 20, 9, 2, 10, 14, 15, 23, 12, ) corresponding
to the real location of the offices in the units available 227696 m.sec.

Figure 8 shows a ACS solution for the QAP input matrix given in apendix,
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Figure 1.8: Typical Iteration to Solution

1.5.4 Demonstration of local and global optimization techniques
of QAP of order 33

Here we give statistical design of global optimization experiments to obtain optimal combi-
nation of global optimization parameters that would be giving solution close to the global
optimal solution.

We also describe comparison between multistart local optimization and global optimiza-
tion.

Figure 9 and 10 compare Monte Carlo trials with 33 (the same number of nodes) and 10
ants (agents) with 200 trials.

0 20 40 60 80 100 120 140 160 180 200
2.15

2.2

2.25

2.3

2.35

2.4

2.45
x 10

5 200 trial comparision

c
o

s
t 

in
 d

is
ta

n
c
e
 /
 f

lo
w

trial

Figure 1.9: Comparison with the Number of Ants Equal to Number of Nodes (33)
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Figure 1.10: Comparison with Number of Ants Fixed at 10

1.6 Performance Analysis

Figure 11 and 12 represents CPU time tradeoff analysis of Time vs Maximum Assignment
(When To Stop) and Problem Size vs Time.
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Figure 1.12: Problem Size vs Time

1.7 Applications of QAP

It is astonishing how many real-life applications can be modeled as QAPs. An early natural
application in location theory was used in a campus planning model. The problem consists
of planning the sites of n buildings on a campus, where bjl is the distance from site j to
site l and aik is the traffic intensity between building i and building k. The objective is to
minimize the total weekly walking distance between the buildings.

Another early application in this area, where minimizing the number of connections in
a backboard wiring problem, nowadays an outdated technology of historical interest only.
Another way to use QAPs in hospital planning, related problem for forest parks.

In addition to facility location, QAPs appear in a variety of applications such as computer
manufacturing, scheduling, process communications, and turbine balancing. In the field of
ergonomics Pollatschek, Gershoni and QAPs can be applied to typewriter keyboard design.
The problem is to arrange the keys on a keyboard so as to minimize the time needed to write
texts. Let the set of integers N = {1, 2, ..., n} denote the set of symbols to be arranged. Then
aik denotes the frequency of the appearance of the ordered pair of symbols i and k. The
entries of the distance matrix bjl are the times needed to press the key in position l after
pressing the key in position j . A permutation φ ∈ Sn describes an assignment of symbols to
keys. An optimal solution φ? for the QAP minimizes the average time for writing a text. A
similar application related to ergonomic design is the development of control boards in order
to minimize eye fatigue.

The turbine runner problem. The blades of a turbine, which due to manufacturing have
slightly different masses, should be welded on the turbine runner such that the center of
gravity coincides with the axis of the runner. It has been shown that the minimization of
the distance between the center of gravity and the axis of the runner is NP-hard, whereas
the maximization can be obtained in polynomial time.
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Apendix A

1 6

Appendix: distance and flow matrices for the new problem

Distance matrix
  0   9  12  54  56  60  66  68  72  78  80  84  90  92  96 102 104 108  40  40  43  82  82  85 104 104 107 234 236 246 248 258 260

      0  15  56  58  62  68  70  74  80  82  86  92  94  98 104 106 110  42  42  45  84  84  87 106 106 109 236 238 248 250 260 262

          0  60  62  66  72  74  78  84  86  90  96  98 102 108 110 114  46  46  49  88  88  91 110 110 113 240 242 252 254 264 266

              0   9  12  54  56  60  66  68  72  78  80  84  90  92  96  82  82  85  40  40  43  92  92  95 246 248 258 260 270 272

                  0  15  56  58  62  68  70  74  80  82  86  92  94  98  84  84  87  42  42  45  94  94  97 248 250 260 262 272 274

                      0  60  62  66  72  74  78  84  86  90  94  98 102  88  88  91  46  46  49  98  98 101 252 254 264 266 276 278

                          0   9  12  54  56  60  66  68  72  78  80  84  94  94  97  82  82  85 134 134 137 258 260 270 272 282 284

                              0  15  56  58  62  68  70  74  80  82  86  96  96  99  84  84  87 136 136 139 260 262 272 274 284 286

                                  0  60  62  66  72  74  78  84  86  90 100 100 103  88  88  91 140 140 143 264 266 276 278 288 290

                                      0   9  12  54  56  60  66  68  72 106 106 109  94  94  97 146 146 149 270 272 282 284 294 296

                                          0  15  56  58  62  68  70  74 108 108 111  96  96  99 148 148 151 272 274 284 286 296 298

                                              0  60  62  66  72  74  78 112 112 115 100 100 103 152 152 155 276 278 288 290 300 302

                                                  0   9  12  54  56  60 118 118 121 106 106 109 158 158 161 282 284 294 296 306 308

                                                      0  15  56  58  62 120 120 123 108 108 111 160 160 163 284 286 296 298 308 310

                                                          0  60  62  66 124 124 127 112 112 115 164 164 167 288 290 300 302 312 314

                                                              0   9  12 130 130 133 118 118 121 170 170 173 294 296 306 308 318 320

                                                                  0  15 132 132 135 120 120 123 172 172 175 296 298 308 310 320 322

                                                                      0 136 136 139 124 124 127 176 176 179 300 302 312 314 324 326

                                                                          0   6   8  60  60  63  72  72  75 192 194 204 206 216 218

                                                                              0   6  60  60  63  72  72  75 192 194 204 206 216 218

                                                                                  0  63  63  66  75  75  78 195 197 207 209 219 221

                                                                                      0   6   8  60  60  63 204 206 216 218 228 230

                                                                                          0   6  60  60  63 204 206 216 218 228 230

                                                                                              0  63  63  66 207 209 219 221 231 233

                                                                                                  0   6   8 216 218 228 230 240 242

                                                                                                      0   6 216 218 228 230 240 242

                                                                                                          0 219 221 231 239 243 245

                                                                                                              0   8  70  72  82  84

                                                                                                                  0  72  74  84  86

                                                                                                                      0   8  70  72

                                                                                                                          0  72  74

                                                                                                                              0   8

                                                                                                                                  0

Figure 1.13: Distance matrix of QAP of order 33
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1 7

Flow matrix

  0  10  20   4   7  24  30   6   8   2   4   6   5  10   4  10   0  14   6   6   0  10   0   4  12   4   4   1  10   0   0   0   0

      0   2   1   1   4   8   2   2   0   4   0   0   4   2   2   0   6   2   2   0   2   0   0   0   0   2   1  10   0   4   0   0

          0  13   7  20  24  10  10   0   2   4   0  10   0   4   1  10   2   4   1   4   1   2   2   7   0   0  36   2   0   0   0

              0   8   7   2   2   2   0   0   1   0   4   0   0   0   4   0   0   0   0   0   0   5   3   0   0   5   2   1   0   0

                  0   2   1   1   1   0   0   0   1   2   0   0   0   3   0   0   0   0   0   0   2   1   0   0   3   0   0   0   0

                      0  20  10  10   4  16  14   9  20   8  12   0  24   8   8   0  10   0   4   6   7   0   0  10   2   0   0   0

                          0   4   4   0   0   4   3  12   0   0   0  16   0   0   0   0   0  20  24  20  10   7  36  13  20   7  10

                              0   0   1   0   4   0   8   0   0   0   0   0   0   0   0   0   0   4   0   0   0   4   0   0   0   0

                                  0   1   0   4   0   0   0   0   0  12   0   0   0   0   0   0   4   0   0   0   4   0   0   0   0

                                      0   0   0   0   6   0  10   3   8   0   8   2   8   3   0   0   2   0   1   4   1   0   1   0

                                          0   8   5   4   4   4   0   4   4   2   0   2   0   0   4   0   0   0   2   0   0   0   0

                                              0   3  10  20   4   0   0   4   0   0   0   0   0   4   0   0   0   4   0   2   1   0

                                                  0   0   4   0   0  10  24   4   0   6   0   0   4   0   0   0   4   0   2   1   0

                                                      0  30  40  20   6   4   4   0   4   0   4   4   5   4   3  10   4   4   1   5

                                                          0  10   0   0   4   0   0   0   0   0   4   4   2   0   4   1   4   3   0

                                                              0  27   0   0   4   0   4   0   4   4   3   0   0   4   3   2   0   3

                                                                  0   0   0   0   0   0   0   0   0   0   0   0   2   0   0   0   5

                                                                      0  30  30  11  30  11   6   6   7   4   4  10   4   4   1   7

                                                                          0  10   0  10   0   0   4   4   2   0   4   1   4   3   0

                                                                              0  27  10   0   4   4   2   0   0   4   3   2   0   3

                                                                                  0   0   0   0   0   0   0   0   2   0   0   0   5

                                                                                      0  27   4   4   3   0   0   4   3   2   0   3

                                                                                          0   0   0   0   0   0   1   0   0   0   5

                                                                                              0  10  13   4   3  10   7   4   1   1

                                                                                                  0  20   4   1   4   0   0   0   0

                                                                                                      0   3   2  13   5   7   3   3

                                                                                                          0   0   6   7  10   7   0

                                                                                                              0   3   5   7   5   0

                                                                                                                  0  13  24  11   7

                                                                                                                      0  20   8   6

                                                                                                                          0  13  13

                                                                                                                              0   0

                                                                                                                                  0

Figure 1.14: Flow Matrix of QAP of order 33
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Apendix B

Pseudo Code of our implmentation

Let us see what kind of input and corresponding output we expect from the Ant algorithm
we use to solve Quadratic assignment problem. Here we assume that the distance-flow (DF)
matrix must be n× n secondly upper triangular must contain distances and lower tringular
must contsain flows. Most importantly the diagonal entries must be NAN, This is obvios
because assigning ith department to ith department does not make any sense.

On input (n: number of sites or department, m: number of assignments when to
stop, the distance-flow matrix: DF, where DFij, i < j = distance, DFij, i > j =
flow and DFii = NaN . )
Result: Cheapest cost, number of assignments, assignment to each department i.e.

ith department to site x?

Algorithm 1: Input-Output objective for Ant algorithm

Next we describe and initialize the parameters for the Ant algorithm the we are implent-
ing here to solve the quadratic assignment problem. For example number of ants, an optimal
guessed solution, weight of pheromone, weight of heuristic information, evaporation param-
eter, constant for pheromone updating etc need to be initialized befor we begin with final
algorithm.

Initialization:
Number of Ants, ants = NumAnts.
Number of assignments (when to stop), MaxAssigns = m
Optimal solution, optimal = c?

Weight of pheromone, a = −1
Weight of heuristic information, b = 1
Evaporation parameter, λ = 0.9
Constatnt for pheromone updating, Q = 10
Assignment of each Ant, AMants×n, where AMij = 1
Minimum cost, MinCost = −1
Heuristic information - sum of distance between sites,
for i = 1,2,...,n do

Di =
∑i−1

j=1DFji +
∑n

j=i+1DFij
end

Algorithm 2: Initialization for Ant algorithm

At each iteration t? the Ant algorithm for quadratic assignment problem runs in two phases,
phase 1 and phase 2. In phase 1, the algorithm finds pheromone and then algorithm enters
in phase 2, which is very critical and most important part of this algorithm. In phase 2,
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algorithm assigns departments to sites by making assignments to each ant.

Start the Algorithm:
assign = 1.
repeat

Stopping criterion: // Algorithm stopes when at iteration t?, it satisfy
the following:
assign > MaxAssigns and ( MinCost ≤ optimal or MinCost 6= −1 )
Phase I: Finding pheromone
//At first loop of iteration, initialize pheromone
Phase II: Assigning departments to sites
//Making assignments to each Ant

//Get random department order
For each department index

//Get sum of the preferences and the preferences for each site
//Get probabilities of assigning the department to each free site
//Get the site where the department will be assigned
//Eliminate the selected site from the free sites

//Get the cost of the Ant’s assignment
until assign ≤MaxAssigns and ( MinCost > optimal or MinCost = −1
);

Algorithm 3: The ANT Algorithm for the Quadratic Assignment Problem

Next algorithm 4 and algorithm 5 contains step by step procedure done in phase 1 and
in phase 2 respectvely at each iteration t?. Please note that at each iteration t?, the phase
1 and phase 2 is compalsory to run in order to get the optimal solution to QAP. Let at the
end of iteration t? the stopping crtiterion is satisfied and the algorithm terminates, then the
algorithm guarantee the optimality of solution to given input instances for QAP.

Phase I: Finding pheromone
//At first loop of iteration, initialize pheromone
if assign = 1 then

Set 1 as initial pheromone, pherij = 1, for i, j = 1, 2, ..., n
else

δij =
∑ Q

cost
, pher = λ× pher + δ

end

Algorithm 4: Phase 1: The ANT Algorithm for the Quadratic Assign-
ment Problem
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Phase II: Assigning departments to sites
//Making assignments to each Ant
for ant = 1,2,...,ants do

Get random department order, deptsn×2, deptsi1 = i and sort it
Keep available sites in a vector, FreeSitesi = i
Preference for each site, prefi = 1, for i = 1, 2, ..., n.
Probabilities for each department, probi = 1, for i = 1, 2, ..., n
for DeptIndex = 1, 2, ..., n do

CurDept = deptsDeptIndex
//Get sum of the preferences and the preferences for each site
for SiteIndex = 1, 2, ...size(FreeSites, 2) do

prefSiteIndex = (FreeSitesSiteIndex)
a × ( 1

DFreeSitesSiteIndex
)b

PrefSum = PrefSum+ prefSiteIndex
end
//Get probabilities of assigning the department to each free
site
prob = FreeSites, probi,2 = pref

PrefSum
, for i = 1, 2, ..., n

//Get the site where the department will be assigned
Sort rows of prob in ascending order
SelectedSite = probsize(prob,1), AMant,CurDept = SelectedSite
//Eliminate the selected site from the free sites
Find index, where FreeSites = SelectedSite
prob1j = NULL, FreeSitesindex = NULL, prefindex = NULL

end
//Get the cost of the Ant’s assignment
for i = 1,2,...,n do

for j=1...i-1 do
DeptF low = DFij, site1 = AMant,i, site2 = AMant,j

if site1 < site2 then
SitesDistance = DFsite1,site2

else
SitesDistance = DFsite2,site2

end
costsant = costsant +DeptF low × SitesDistance

end

end
if costsant < MinCost or MinCost = −1 then

MinCost = costsant, ChAssign = AMant

end
assign = assign+ 1

end

Algorithm 5: Phase 2: ANT Algorithm for the Quadratic Assignment
Problem
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