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Abstract

Now days there are several applications of block bootstrap method in stationary and non stationary time

series models. One of the well known application of this method is in case of IGARCH time series models.

Bootstrap confidence intervals also play mazor role in finding out confidence intervals of given any time

series data. First we have presented how block bootstrap method works in stationary and non stationary

time series models. Then we have presented the two bootstrap confidence interval methods one is bootstrap

percentile confidence interval method and second is bootstrap-t confidence interval method.

For any time series data using Autoregressinve AR(1) and AR(2) time series model to analyze the data

set and then find out the bootstrap confidence interval using percentile confidence interval method and

bootstrap-t confidence interval method.

1 Block bootstrap method

The bootstrap is a simulation approach to estimate the distribution of test statistics. The original method is

to create bootstrap samples by resampling the data randomly, and then constructs the associated empirical

distribution function. Often, the original bootstrap method provides improvements to the poor asymptotic

approximations when data are independently and identically distributed. However, the performance of the

original procedure can be far from satisfactory for time series data with serial correlation and heteroscedasticity

of unknown form.

The block bootstrap is the most general method to improve the accuracy of bootstrap for time series data.

By dividing the data into several blocks, it can preserve the original time series structure within a block.

However, the accuracy of the block bootstrap is sensitive to the choice of block length, and the optimal block

length depends on the sample size, the data generating process, and the statistic considered. To date, there is
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no proper diagnostic tool to choose the optimal block lengths and it still remains as an unsolved question for

future study.

The detail of the block bootstrap procedure in our Monte Carlo experiment takes the following steps:

Step 1. Choose the block length which increases with the sample size. In our block bootstrap procedure,

we choose the block length (l) by the criterion l = T 1/3 , where T is the sample size. Hall and Horowitz (1996)

use two block lengths l = 5 and l = 10 for both two sample sizes (T = 50, 100) and Inoue and Shintani (2001)

select the block length by an automatic procedures, which result in an average block length of 3.5 for sample

size 64 and 6 for sample size 128. Here we use a simple rule, which the block length in our simulations is

similar to the average block length of Inoue and Shintani (2001).

Step 2. Resample the blocks and generate the bootstrap sample. The blocks may be overlapping or

non-overlapping. According to Lahiri (1999), and Andrews (2002), there is little difference in performance for

these two methods. For the overlapping method, we divide the data into T − l+ 1 blocks, which block 1 being

{y1, y2, ..., yl}, block 2 being {y2, y3, ..., yl+1}, , etc. For the non-overlapping method, we divide the data into

T/l blocks, which block 1 being {y1, y2, ..., yl}, block 2 being {yl+1, yl+2, ..., yl+l}, , etc. In our Monte Carlo

experiments, we adopt the overlapping method and resample yt , xt and zt together which is called the pairs

bootstrap. The block bootstrap sample can be generated as follows:

(y∗t , x
∗
t , z
∗
t ) = (yi+j , xi+j , zi+j)

where t = 1,2,3,...T, i is iid uniform random variable on {1, 2, 3, ...T − l + 1} and j = 1,2,3,...l.

Step 3. Calculate the efficient bootstrap GMM estimator and the test statistic. First, estimate the

bootstrap TSLS estimator

β̂∗TSLS = (X∗′Z∗(Z∗′Z∗)−1Z∗′X∗)−1(X∗′Z∗(Z∗′Z∗)−1Z∗′y∗)

and use the residual ê∗t = y∗t − x∗t β̂∗TSLS to construct the efficient weighting matrix

W ∗t = ( 1
T

∑T
t=1ĝ

∗
t ĝ
∗
t

′
)−1

where ĝ∗t = z∗t ê
∗
t . Second, calculate the efficient bootstrap GMM estimator and the bootstrap variance

β̂∗GMM = (X∗′Z∗W ∗TZ
∗′X∗)−1(X∗′Z ∗W ∗TZ∗

′y∗)

(σ̂∗)2 = (X∗′Z∗W ∗TZ
∗′X∗)−1

In the sense, the bootstrap GMM estimator β̂∗GMM is a consistent estimator of β. However, because the

bootstrap sample can not satisfy the same moment condiation as the population distribution, it fails to achieve

an asymptotic refinement. A correlation suggested by Hall and Horowitz (1996) is to re-center the bootstrap

version of the moment functions. Therefore, in the linear model, the revised bootstrap GMM estimator derived

by Hansen (2004) is
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β̂∗GMM = (X∗′Z∗W ∗TZ
∗′X∗)−1((X∗′Z ∗W ∗TZ∗

′y∗ − Z ′û))

where û are residuals of GMM estimation from original data. Finally, calculate the bootstrap test statistic

t∗ =
β̂∗GMM−β

σ̂∗ .

and the final step is :

Step 4. Calculate the bootstrap critical values of the test statistic and test the null hypothesis. First,

construct the empirical distribution of the test statistic by repeating step2 and step3 for sufficient amount of

times and sorting the bootstrap test statistic t∗ from the smallest to the largest. Usually, we set the (1 − α
2 )

quantile and the (α2 ) quantile of the distribution of t∗ for our bootstrap critical values, where is significance

level. However, when t∗ does not have a symmetric distribution, the bootstrap critical values outlined above

may perform quite poorly. This problem can be circumvented by an alternative method. For the two sided

hypothesis testing, the upper bootstrap critical value q∗n(α) is the (1 − α) quantile of the distribution of |t∗|,

and the lower bootstrap critical value is −q∗n(α). Reject the null hypothesis if the test statistic of original data

is between two bootstrap critical values. Otherwise, we cannot reject null hypothesis.

2 Bootstrap confidence intervals method

There are different types of bootstrap confidence intervals method available. Although we are looking for only

two types:

1. Bootstrap percentile confidence interval method

2. Bootstrap-t confidence interval method

Suppose we have samples {X1, X2, ..., Xn} the estimator θ̂ = X̄n =
∑n

i=1
Xi
n , and we have

VF̂n
(θ̂) = σ̂2

n = 1
n

1
n

∑n
i=1(Xi − X̄n)2

let we want to generate B bootstrap samples then the bootstrap procedure follows:

1. For b = 1,2,3,...,B

2. Draw X∗1 , ..., X
∗
n ∼ F̂n

3. Compute θ̂∗b = T (X∗1 , ..., X
∗
n)

4. Compute vboot = 1
B

∑B
b=1(θ̂∗b −

1
B

∑B
c=1 θ̂

∗
c )

2

3 Bootstrap percentile confidence interval:

1. Draw X∗1 , ..., X
∗
n ∼ F̂n

2. Compute ˆastb = T (X∗1 , ..., X
∗
n) for b = 1(1)B

3. Compute non-parametric confidence interval based on ∗̂b points

4. let θ̂∗(r) is the r-th order statistics

5. Therefore the 100(1−α)% confidence interval will be [θ̂∗k, θ̂
∗
k′ ] where k = [α2 b] if [α2 b] is integer and k = [α2 b]+1

if [α2 b] is not an integer. Similarly, k′ = [(1− α
2 )b] if [(1− α

2 )b] is integer and k′ = [(1− α
2 )b] + 1 if [(1− α

2 )b] is

not an integer.
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4 Bootstrap-t confidence interval

Before applying resampling to time series analysis, we look the simpler problem. Suppose we wish to construct

a confidence interval for the time series data based on a given sample. One way to start with the so called

t-statistic which is

t = µ−X̄
s√
n

where s√
n

is standard error of the mean.

If we are sampling from a normally distributed sample, then the probability distribution of t is known to be

the t-distribution with n-1 degrees of freedom. We denote by tα/2 the α/2 upper t-value, that is the 1 − α/2

quantile of this distribution. Thus t has probability α/2 of exceeding tα/2 . Because of symmetry of the

t-distribution, the probability is also α/2 that t is less than −tα/2.

therefore for normally distributed data, the probability is 1− α that

−tα/2 ≤ t ≤ −tα/2

after substituting the value of t we get

X̄ − tα/2 s√
n
≤ µ ≤ X̄ + tα/2

s√
n

which shows that

X̄ ± s√
n
tα/2

is a 1− α confidence interval for µ, assuming normally distributed data.

What if we are not sampling from a normal distribution ?? In that case, the distribution of t not is t-

distribution, but rather some other distribution that is not known to us. there are two problems. first we do

not know the distribution of given sample. Second, even if sample distribution were known it is a difficult,

ussually intractable, probability calculation to get the distribution of the t-statistic from the distribution of

the given sample. This calculation has only been done for normal given sample. Considering the difficulty of

these two problems, we can still get a confidence interval by resampling. we can take a large number, say B,

of resamples from the original sample.

Let X̄boot,b and sboot,b be the sample mean and standard deviation of the bth resample, b=1,2,...,B.

We define

tboot,b =
X̄−X̄boot,b

sboot,b√
n

The resamples are independent of each other, the collection tboot,b, tboot,b, ... can be treated as a random

sample from the distribution of the t-statistic. After B values of tboot,b have been calculated, one from each re-

sample, we find the 100α% and 100(1−α)% percentiles of this collection of tboot,b values. Call these percentiles

tL and tU . We find tL and tU as follows:

1. The B values of tboot,b are sorted from smallest to largest

2. Then we calculate Bα/2 and round to the nearest integer. suppose the result is KL.
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3. The kLth sorted value of tboot,b is tL.

4. Similarly, let KU be B(1−α/2) , rounded to the nearest integer and then tU is the KU th sorted value of tboot,b.

If the original sample is skewed, then there is no reason to suspect that the 100α% percentile is minus the

100(1 − α)% percentile, as happens for symmetric samples such as t-distribution. In other words, we do not

necessarily expect that tL = tU . However, this fact causes us no problem, since the bootstrap allows us to

estimate tL and tU without assuming any relationship between them. Now, we replace −tα/2 and tα/2 in the

confidence interval by tL and tU , respectively.

Finally the bootstrap confidence interval for µ is :

(X̄ + tL
s√
n
, X̄ + tU

s√
n

)

The bootstrap has solved both problems mentioned above. we do not need to know the give data distribu-

tion since we can estimate it by the sample. Also we do not need to calculate the distribution of the t-statistic

using probability theory. Instead we simulate from this distribution.

We use the notation

SE = s√
n

and

SEboot = sboot√
n

******************* END ********************
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